
 SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

 Ramapuram, Chennai

 FACULTY OF SCIENCE AND HUMANITIES

 Department of Computer Science and Applications

 (M.C.A Computer Application)

PRACTICAL RECORD

NAME :

REGISTER NO. :

COURSE : M.C.A - Computer Application

SEMESTER / YEAR : I / I

SUBJECT CODE : PCA25C06J

SUBJECT NAME : Advanced Operating System

November 2025

EX.

NO.

 DATE

LIST OF EXPERIMENTS

PAGE

NO.

SIGNATURE

OF FACULTY

IN CHARGE

1
 Simulation of Process Scheduling

2
 Implementation of System Calls

3
 Implementation of Deadlocks

4
 Implementation of Page replacement

algorithm

5
 Implementation of Scheduling

algorithm

6
 Implementation of File access methods

7
 Implementation of Distributed

scheduling

8
 Implementation of clock

synchronization

9
 Implementation of Concurrency control

algorithms

10
 Write a program using POSIX Real-

Time Threads

11
 Implementation of real time simulation

12
 Simulate a Hybrid Scheduler using

combination of RMS and EDF

13
 Write a program using POSIX Real-

Time Threads Using C

14
 Study and simulate Power Management

Approaches used in Android/iOS

15
 Implementations of Android

Applications

Ex No: 1 Register No:

Date: Name:

Simulation of Process Scheduling

AIM:

To simulate different CPU process scheduling algorithms such as FCFS, SJF (Non-Preemptive),

and Priority Scheduling using a shell script and to compute the Waiting Time and Turnaround Time

for each process.

Program:

Program1: FCFS Scheduling

#!/bin/bash

echo "FCFS SCHEDULING"

echo -n "Enter number of processes: "

read n

for ((i=0; i<n; i++)); do

 echo -n "Burst Time of P$((i+1)): "

 read bt[$i]

 pid[$i]=$((i+1))

done

wt[0]=0

for ((i=1; i<n; i++)); do

 wt[$i]=$((wt[$i-1] + bt[$i-1]))

done

for ((i=0; i<n; i++)); do

 tat[$i]=$((wt[$i] + bt[$i]))

done

echo ""

echo "---"

echo -e "PID\tBT\tWT\tTAT"

echo "---"

for ((i=0; i<n; i++)); do

 echo -e "${pid[$i]}\t${bt[$i]}\t${wt[$i]}\t${tat[$i]}"

done

echo "---"

Program2:SJF Scheduling

#!/bin/bash

echo "SJF (NON-PREEMPTIVE) SCHEDULING"

echo -n "Enter number of processes: "

read n

for ((i=0; i<n; i++)); do

 echo -n "Burst Time of P$((i+1)): "

 read bt[$i]

 pid[$i]=$((i+1))

done

Sorting by Burst Time

for ((i=0; i<n; i++)); do

 for ((j=i+1; j<n; j++)); do

 if [${bt[$j]} -lt ${bt[$i]}]; then

 # swap burst time

 temp=${bt[$i]}

 bt[$i]=${bt[$j]}

 bt[$j]=$temp

 # swap process id

 temp=${pid[$i]}

 pid[$i]=${pid[$j]}

 pid[$j]=$temp

 fi

 done

done

wt[0]=0

for ((i=1; i<n; i++)); do

 wt[$i]=$((wt[$i-1] + bt[$i-1]))

done

for ((i=0; i<n; i++)); do

 tat[$i]=$((wt[$i] + bt[$i]))

done

echo ""

echo "---"

echo -e "PID\tBT\tWT\tTAT"

echo "---"

for ((i=0; i<n; i++)); do

 echo -e "${pid[$i]}\t${bt[$i]}\t${wt[$i]}\t${tat[$i]}"

done

echo "---"

Program3:Priority Scheduling

#!/bin/bash

echo "PRIORITY (NON-PREEMPTIVE) SCHEDULING"

echo -n "Enter number of processes: "

read n

for ((i=0; i<n; i++)); do

 echo -n "Burst Time of P$((i+1)): "

 read bt[$i]

 echo -n "Priority of P$((i+1)): "

 read pr[$i]

 pid[$i]=$((i+1))

done

Sorting by Priority (lower value = higher priority)

for ((i=0; i<n; i++)); do

 for ((j=i+1; j<n; j++)); do

 if [${pr[$j]} -lt ${pr[$i]}]; then

 temp=${pr[$i]}

 pr[$i]=${pr[$j]}

 pr[$j]=$temp

 temp=${bt[$i]}

 bt[$i]=${bt[$j]}

 bt[$j]=$temp

 temp=${pid[$i]}

 pid[$i]=${pid[$j]}

 pid[$j]=$temp

 fi

 done

done

wt[0]=0

for ((i=1; i<n; i++)); do

 wt[$i]=$((wt[$i-1] + bt[$i-1]))

done

for ((i=0; i<n; i++)); do

 tat[$i]=$((wt[$i] + bt[$i]))

done

echo ""

echo "---"

echo -e "PID\tBT\tPR\tWT\tTAT"

echo "---"

for ((i=0; i<n; i++)); do

 echo -e "${pid[$i]}\t${bt[$i]}\t${pr[$i]}\t${wt[$i]}\t${tat[$i]}"

done

echo "---"

Output: FCFS

RESULT:

Thus, the simulation of FCFS, SJF, and Priority Scheduling algorithms was successfully

implemented using a Bash script, and the Waiting Time and Turnaround Time for all processes

were calculated.

Ex No: 2 Register No:

Date: Name:

Implementation of System Calls

AIM:

To implement and demonstrate various operating system system calls such as fork(), exec(),

getpid(), file operations (open, read, write), stat(), and exit() using a shell script.

Program:

#!/bin/bash

echo "-------------------------------"

echo " SYSTEM CALLS DEMONSTRATION "

echo "-------------------------------"

echo ""

echo "1. fork() simulation"

echo "2. exec() simulation"

echo "3. getpid() system call"

echo "4. File operations (open, read, write)"

echo "5. stat() system call"

echo "6. exit() system call"

echo -n "Enter your choice: "

read ch

case $ch in

1)

echo "Simulating fork() using a subshell & background process"

(

echo "This is CHILD process"

echo "Child PID: $$"

) &

echo "This is PARENT process"

echo "Parent PID: $$"

;;

2)

echo "Simulating exec() - executing ls command in place"

echo "Before exec()"

exec ls

echo "This line will not execute"

;;

3)

echo "Using getpid() equivalent"

echo "Current Process ID (PID): $$"

;;

4)

echo "File Operations"

echo -n "Enter filename to create/open: "

read fname

echo "Opening file..."

touch $fname

echo -n "Write data to file: "

read data

echo "$data" > $fname

echo "Data written successfully"

echo "Reading file content:"

cat $fname

;;

5)

echo "stat() system call simulation"

echo -n "Enter filename: "

read fn

stat $fn

;;

6)

echo "Demonstrating exit() system call"

echo "Exiting program..."

exit

;;

*)

echo "Invalid choice";;

esac

Output

RESULT:

Thus, the implementation of different system calls such as fork(), exec(), getpid(), file handling,

stat(), and exit() was successfully demonstrated using shell scripting.

Ex No: 3 Register No:

Date: Name:

Implementation of Deadlocks

AIM:

To simulate a deadlock scenario in an operating system using shell scripts by creating two

processes competing for two shared resources, thereby demonstrating how circular wait and

mutual exclusion lead to deadlock.

Program:

deadlock1.sh

#!/bin/bash

echo "Process 1: Trying to lock Resource 1"

exec 10>R1.lock

flock 10

echo "Process 1: Locked Resource 1"

sleep 3

echo "Process 1: Trying to lock Resource 2"

exec 11>R2.lock

flock 11

echo "Process 1: Locked Resource 2"

echo "Process 1: Completed"

deadlock2.sh

#!/bin/bash

echo "Process 2: Trying to lock Resource 2"

exec 20>R2.lock

flock 20

echo "Process 2: Locked Resource 2"

sleep 3

echo "Process 2: Trying to lock Resource 1"

exec 21>R1.lock

flock 21

echo "Process 2: Locked Resource 1"

echo "Process 2: Completed"

output:

RESULT:

Thus, the deadlock situation was successfully simulated using two shell scripts, demonstrating

how improper resource allocation causes processes to wait indefinitely, resulting in a deadlock.

Ex No: 4 Register No:

Date: Name:

Implementation of Page replacement algorithm

AIM:

To implement and simulate different page replacement algorithms such as FIFO, LRU, and

Optimal using shell scripts, and to calculate the number of page faults for a given reference string.

PROGRAM 1: FIFO PAGE REPLACEMENT

#!/bin/bash

echo -n "Enter number of frames: "

read nf

echo -n "Enter number of pages: "

read np

echo "Enter page reference string:"

for ((i=0;i<np;i++))

do

read ref[$i]

done

for ((i=0;i<nf;i++))

do

frame[$i]=-1

done

pf=0

pos=0

echo "Page\tFrames"

for ((i=0;i<np;i++))

do

page=${ref[$i]}

hit=0

for ((j=0;j<nf;j++))

do

if [${frame[$j]} -eq $page]; then

hit=1

break

fi

done

if [$hit -eq 0]; then

frame[$pos]=$page

pos=$(((pos+1) % nf))

pf=$((pf+1))

fi

echo -n "$page\t"

for ((j=0;j<nf;j++))

do

echo -n "${frame[$j]} "

done

echo ""

done

echo "Total Page Faults: $pf"

PROGRAM 2: LRU PAGE REPLACEMENT

#!/bin/bash

echo -n "Enter number of frames: "

read nf

echo -n "Enter number of pages: "

read np

echo "Enter page reference string:"

for ((i=0;i<np;i++))

do

read ref[$i]

done

for ((i=0;i<nf;i++))

do

frame[$i]=-1

recent[$i]=0

done

pf=0

echo "Page\tFrames"

for ((i=0;i<np;i++))

do

page=${ref[$i]}

hit=0

for ((j=0;j<nf;j++))

do

if [${frame[$j]} -eq $page]; then

hit=1

recent[$j]=$i

break

fi

done

if [$hit -eq 0]; then

lru_index=0

min=${recent[0]}

for ((j=1;j<nf;j++))

do

if [${recent[$j]} -lt $min]; then

min=${recent[$j]}

lru_index=$j

fi

done

frame[$lru_index]=$page

recent[$lru_index]=$i

pf=$((pf+1))

fi

echo -n "$page\t"

for ((k=0;k<nf;k++))

do

echo -n "${frame[$k]} "

done

echo ""

done

echo "Total Page Faults: $pf"

PROGRAM 3: OPTIMAL PAGE REPLACEMENT

#!/bin/bash

echo -n "Enter number of frames: "

read nf

echo -n "Enter number of pages: "

read np

echo "Enter page reference string:"

for ((i=0;i<np;i++))

do

read ref[$i]

done

for ((i=0;i<nf;i++))

do

frame[$i]=-1

done

pf=0

echo "Page\tFrames"

for ((i=0;i<np;i++))

do

page=${ref[$i]}

hit=0

for ((j=0;j<nf;j++))

do

if [${frame[$j]} -eq $page]; then

hit=1

break

fi

done

if [$hit -eq 0]; then

replace_index=-1

farthest=-1

for ((j=0;j<nf;j++))

do

f=${frame[$j]}

found=0

for ((k=i+1;k<np;k++))

do

if [${ref[$k]} -eq $f]; then

found=1

if [$k -gt $farthest]; then

farthest=$k

replace_index=$j

fi

break

fi

done

if [$found -eq 0]; then

replace_index=$j

break

fi

done

frame[$replace_index]=$page

pf=$((pf+1))

fi

echo -n "$page\t"

for ((k=0;k<nf;k++))

do

echo -n "${frame[$k]} "

done

echo ""

done

echo "Total Page Faults: $pf"

OUTPUT FIFO PAGE REPLACEMENT

RESULT:

Thus, the FIFO, LRU, and Optimal page replacement algorithms were successfully implemented

using shell scripts, and the page faults for each algorithm were computed effectively.

Ex No: 5 Register No:

Date: Name:

Implementation of Scheduling algorithm

AIM:

To implement and simulate disk scheduling algorithms such as FCFS, SSTF, SCAN, and C-SCAN

using shell scripts, and to calculate the total head movement for a given set of disk requests.

PROGRAM 1: FCFS DISK SCHEDULING

#!/bin/bash

echo -n "Enter number of requests: "

read n

echo "Enter disk requests:"

for ((i=0;i<n;i++))

do

read req[$i]

done

echo -n "Enter initial head position: "

read head

total=0

cur=$head

echo "Sequence of movement:"

echo -n "$cur "

for ((i=0;i<n;i++))

do

diff=$((req[$i] - cur))

if [$diff -lt 0]; then diff=$((-diff)); fi

total=$((total + diff))

cur=${req[$i]}

echo -n "-> $cur "

done

echo ""

echo "Total Head Movement = $total"

PROGRAM 2: SSTF (Shortest Seek Time First)

#!/bin/bash

echo -n "Enter number of requests: "

read n

echo "Enter disk requests:"

for ((i=0;i<n;i++))

do

read req[$i]

visited[$i]=0

done

echo -n "Enter initial head position: "

read head

total=0

cur=$head

done_count=0

echo "Sequence:"

echo -n "$cur "

while [$done_count -lt $n]

do

min=9999

index=-1

for ((i=0;i<n;i++))

do

if [${visited[$i]} -eq 0]; then

diff=$((req[$i] - cur))

if [$diff -lt 0]; then diff=$((-diff)); fi

if [$diff -lt $min]; then

min=$diff

index=$i

fi

fi

done

visited[$index]=1

total=$((total + min))

cur=${req[$index]}

done_count=$((done_count + 1))

echo -n "-> $cur "

done

echo ""

echo "Total Head Movement = $total"

PROGRAM 3: SCAN (Elevator Algorithm)

Save as scan.sh

#!/bin/bash

echo -n "Enter disk size: "

read ds

echo -n "Enter number of requests: "

read n

echo "Enter requests:"

for ((i=0;i<n;i++))

do

read req[$i]

done

echo -n "Enter initial head position: "

read head

req[$n]=$head

req[$((n+1))]=0

req[$((n+2))]=$ds

sort_req=($(printf "%s\n" "${req[@]}" | sort -n))

echo "Sequence:"

echo -n "$head "

found_head=0

total=0

Find index of head

for ((i=0;i<${#sort_req[@]};i++))

do

if [${sort_req[$i]} -eq $head]; then

found_head=$i

break

fi

done

Move right

for ((i=$found_head+1;i<${#sort_req[@]};i++))

do

diff=$((sort_req[i] - head))

total=$((total + diff))

head=${sort_req[$i]}

echo -n "-> $head "

done

Then reverse to left

for ((i=$found_head-1;i>=0;i--))

do

diff=$((head - sort_req[i]))

total=$((total + diff))

head=${sort_req[$i]}

echo -n "-> $head "

done

echo ""

echo "Total Head Movement = $total"

PROGRAM 4: C-SCAN (Circular SCAN)

Save as cscan.sh

#!/bin/bash

echo -n "Enter disk size: "

read ds

echo -n "Enter number of requests: "

read n

echo "Enter requests:"

for ((i=0;i<n;i++))

do

read req[$i]

done

echo -n "Enter initial head position: "

read head

req[$n]=$head

req[$((n+1))]=0

req[$((n+2))]=$ds

sort_req=($(printf "%s\n" "${req[@]}" | sort -n))

echo "Sequence:"

echo -n "$head "

total=0

found_head=0

Find index of head

for ((i=0;i<${#sort_req[@]};i++))

do

if [${sort_req[$i]} -eq $head]; then

found_head=$i

break

fi

done

Move right to end

for ((i=$found_head+1;i<${#sort_req[@]};i++))

do

diff=$((sort_req[i] - head))

total=$((total + diff))

head=${sort_req[$i]}

echo -n "-> $head "

done

total=$((total + ds))

head=0

echo -n "-> 0 "

for ((i=1;i<$found_head;i++))

do

diff=$((sort_req[i] - head))

total=$((total + diff))

head=${sort_req[$i]}

echo -n "-> $head "

done

echo ""

echo "Total Head Movement = $total"

OUTPUT FCFS DISK SCHEDULING

RESULT:

Thus, various disk scheduling algorithms—FCFS, SSTF, SCAN, and C-SCAN—were

successfully implemented using shell scripts, and the total head movement for each algorithm was

calculated.

Ex No: 6 Register No:

Date: Name:

Implementation of File access methods

Aim:

To implement and demonstrate various file access methods (sequential and random) in a

programming environment, enabling efficient reading and writing of data to files.

PROGRAM 1: SEQUENTIAL FILE ACCESS

#!/bin/bash

echo -n "Enter filename to read sequentially: "

read fname

if [! -f "$fname"]; then

echo "File not found!"

exit

fi

echo "Sequential File Access:"

echo "-----------------------"

lineno=1

while IFS= read -r line

do

echo "Line $lineno: $line"

lineno=$((lineno+1))

done < "$fname"

PROGRAM 2: DIRECT (RANDOM) FILE ACCESS

#!/bin/bash

echo -n "Enter filename: "

read fname

if [! -f "$fname"]; then

echo "File not found!"

exit

fi

echo -n "Enter the line number to access directly: "

read line

echo "Direct Access Result:"

sed -n "${line}p" "$fname"

Direct byte access version (optional):

echo -n "Enter byte offset: "

read offset

echo -n "Enter number of bytes to read: "

read count

dd if="$fname" bs=1 skip=$offset count=$count 2>/dev/null

PROGRAM 3: INDEXED FILE ACCESS

#!/bin/bash

echo "Indexed File Access"

echo "-------------------"

echo -n "Enter key to search: "

read key

index.txt format → key line_number

line=$(grep "^$key " index.txt | awk '{print $2}')

if [-z "$line"]; then

echo "Key not found!"

exit

fi

echo "Record found at line: $line"

record=$(sed -n "${line}p" data.txt)

echo "Record: $record"

HOW TO PREPARE INDEX FILE

Example content for data.txt:

1001 Ram CS

1002 Ravi IT

1003 Ajay ECE

Example content for index.txt:

1001 1

1002 2

1003 3

Output SEQUENTIAL FILE ACCESS

Result:

The program successfully demonstrated the use of different file access methods. Data was

written to and read from files using sequential and random access techniques, verifying correct

implementation and proper handling of file operations.

Ex No: 7 Register No:

Date: Name:

Implementation of Distributed scheduling

Aim:

To implement and study distributed scheduling algorithms that allocate tasks efficiently across

multiple processors in a distributed system, ensuring optimal resource utilization and reduced

execution time.

Program:

#!/bin/bash

echo "----- Distributed Scheduling Simulation -----"

echo -n "Enter number of tasks: "

read n

Read task loads

for ((i=0; i<n; i++)); do

 echo -n "Enter load of Task $((i+1)): "

 read load[$i]

done

node1_load=0

node2_load=0

echo

echo "Task Assignment:"

echo "----------------"

for ((i=0; i<n; i++)); do

 if [$node1_load -le $node2_load]; then

 echo "Task $((i+1)) (Load ${load[$i]}) assigned to NODE 1"

 node1_load=$((node1_load + load[$i]))

 else

 echo "Task $((i+1)) (Load ${load[$i]}) assigned to NODE 2"

 node2_load=$((node2_load + load[$i]))

 fi

done

echo

echo "-------- Final Load Status --------"

echo "Node 1 Total Load: $node1_load"

echo "Node 2 Total Load: $node2_load"

Output:

Result:

The distributed scheduling algorithms were successfully implemented. Tasks were allocated across

multiple processors based on the chosen scheduling strategy, demonstrating improved load

balancing and efficient execution in a distributed environment.

Ex No: 8 Register No:

Date: Name:

Implementation of clock synchronization

Aim:

To implement clock synchronization in a distributed system, ensuring that all system clocks are

coordinated and maintain consistent time across different nodes.

Program

#!/bin/bash

Simple Clock Synchronization (Berkeley Algorithm)

Step 1: Get number of machines

echo -n "Enter number of machines: "

read n

Step 2: Read each machine time

echo "Enter time of each machine (in seconds):"

sum=0

for ((i=1; i<=n; i++))

do

 echo -n "Machine $i time: "

 read t[i]

 sum=$((sum + t[i]))

done

Step 3: Coordinator calculates average time

avg=$((sum / n))

echo ""

echo "Calculated Average Time: $avg seconds"

echo "--------------------------------------"

Step 4: Show time adjustment required for each machine

for ((i=1; i<=n; i++))

do

 diff=$((avg - t[i]))

 echo "Machine $i adjustment: $diff seconds"

done

echo "Clock Synchronization Completed!"

output:

Result:

The clock synchronization algorithm was successfully implemented. The clocks of all nodes were

synchronized, reducing time discrepancies and demonstrating accurate coordination in a

distributed environment.

Ex No: 9 Register No:

Date: Name:

Implementation of Concurrency control algorithms

Aim:

To implement concurrency control algorithms in a database system to manage simultaneous

transactions, ensuring data consistency, integrity, and prevention of conflicts like lost updates or

deadlocks.

Program:

#!/bin/bash

echo "Two-Phase Locking (2PL) Demo"

echo "----------------------------"

lockA=0

lockB=0

echo ""

echo "Transaction T1 requesting Lock on A..."

if [$lockA -eq 0]; then

 lockA=1

 echo "T1 acquired Lock A"

else

 echo "T1 waiting for Lock A"

fi

echo "Transaction T2 requesting Lock on B..."

if [$lockB -eq 0]; then

 lockB=1

 echo "T2 acquired Lock B"

else

 echo "T2 waiting for Lock B"

fi

echo ""

echo "T1 requesting Lock on B..."

if [$lockB -eq 0]; then

 lockB=1

 echo "T1 acquired Lock B"

else

 echo "T1 BLOCKED (2PL prevents conflict)"

fi

echo ""

echo "Unlocking all locks..."

lockA=0

lockB=0

echo "2PL Execution Completed!"

output:

Result:

The concurrency control algorithms were successfully implemented. Multiple transactions were

executed concurrently, and the system maintained data consistency and integrity, effectively

handling conflicts and ensuring correct transaction execution.

Ex No: 10 Register No:

Date: Name:

Write a program using POSIX Real-Time Threads

Aim:

To write and execute a program using POSIX Real-Time Threads (pthread) to demonstrate

concurrent execution of tasks with real-time scheduling and priority management.

Program:

#!/bin/bash

echo "=== POSIX Real-Time Threads Simulation in Bash ==="

High Priority Task (simulating FIFO)

high_priority_task() {

 for i in {1..5}; do

 echo "High Priority Task (FIFO) running..."

 sleep 1

 done

}

Low Priority Task (simulating Round Robin)

low_priority_task() {

 for i in {1..5}; do

 echo "Low Priority Task (RR) running..."

 sleep 1

 done

}

echo "Starting high-priority task..."

Use a subshell instead of 'bash -c' so functions are visible

nice -n -5 bash -c 'for i in {1..5}; do echo "High Priority Task (FIFO) running..."; sleep 1; done'

&

echo "Starting low-priority task..."

nice -n 10 bash -c 'for i in {1..5}; do echo "Low Priority Task (RR) running..."; sleep 1; done' &

wait

echo "All real-time simulated threads completed!"

Output:

Result:

The program using POSIX Real-Time Threads was successfully implemented. Multiple threads

executed concurrently with assigned priorities, demonstrating real-time task scheduling,

synchronization, and efficient CPU utilization.

Ex No: 11 Register No:

Date: Name:

Implementation of real time simulation

Aim:

To implement a real-time simulation program that models and executes tasks in a time-sensitive

environment, demonstrating the behavior of processes under real-time constraints.

Program:

#!/bin/bash

echo "=== Real-Time Simulation ==="

Define Task 1 (Higher priority)

task1() {

 for i in {1..5}; do

 echo "Task 1 (High Priority) executing at $(date +%T)"

 sleep 1

 done

}

Define Task 2 (Lower priority)

task2() {

 for i in {1..5}; do

 echo "Task 2 (Low Priority) executing at $(date +%T)"

 sleep 1

 done

}

echo "Starting Task 1 (High Priority)..."

task1 & # Run in background

echo "Starting Task 2 (Low Priority)..."

task2 & # Run in background

wait

echo "All tasks completed! Real-Time Simulation Done."

Output:

Result:

The real-time simulation was successfully implemented. Tasks were executed according to their

timing constraints, showing correct scheduling, timely execution, and effective management of

real-time processes.

Ex No: 12 Register No:

Date: Name:

Simulate a Hybrid Scheduler using combination of RMS and EDF

Aim:

To simulate a hybrid scheduling algorithm that combines Rate Monotonic Scheduling (RMS) and

Earliest Deadline First (EDF) techniques, aiming to achieve efficient task scheduling in real-time

systems.

Program:

#!/bin/bash

echo "=== Hybrid Scheduler Simulation (RMS + EDF) ==="

Input number of periodic tasks (RMS)

echo -n "Enter number of periodic tasks (RMS): "

read n_rms

Input task periods and execution times

for ((i=0; i<n_rms; i++)); do

 echo -n "Enter period of Task $((i+1)): "

 read period[$i]

 echo -n "Enter execution time of Task $((i+1)): "

 read exec_time[$i]

done

Input number of aperiodic tasks (EDF)

echo -n "Enter number of aperiodic tasks (EDF): "

read n_edf

Input deadlines and execution times

for ((i=0; i<n_edf; i++)); do

 echo -n "Enter deadline of Task $((i+1)): "

 read deadline[$i]

 echo -n "Enter execution time of Task $((i+1)): "

 read edf_exec[$i]

done

echo ""

echo "Simulation of Hybrid Scheduler:"

echo "-------------------------------"

Simulate RMS tasks first

echo "Executing RMS (Periodic) Tasks..."

for ((i=0; i<n_rms; i++)); do

 echo "Task $((i+1)) running for ${exec_time[$i]} units (Period ${period[$i]})"

 sleep ${exec_time[$i]}

done

Then simulate EDF tasks

echo ""

echo "Executing EDF (Aperiodic) Tasks..."

for ((i=0; i<n_edf; i++)); do

 echo "Task $((i+1)) running for ${edf_exec[$i]} units (Deadline ${deadline[$i]})"

 sleep ${edf_exec[$i]}

done

echo ""

echo "Hybrid Scheduler Simulation Completed!"

Output:

Result:

The hybrid scheduler was successfully implemented. Tasks were scheduled using RMS and EDF

principles, demonstrating improved CPU utilization, timely execution, and effective handling of

both periodic and aperiodic tasks in a real-time environment.

Ex No: 13 Register No:

Date: Name:

Write a program using POSIX Real-Time Threads using c

Aim:

To write and execute a program using POSIX Real-Time Threads (pthread) to demonstrate

concurrent execution of tasks with real-time scheduling and priority management.

Program:

#include <stdio.h>

#include <pthread.h>

#include <unistd.h>

void* task(void* arg)

{

 int id = *(int*)arg;

 for(int i = 1; i <= 5; i++)

 {

 printf("Thread %d running %d\n", id, i);

 sleep(1);

 }

 return NULL;

}

int main()

{

 pthread_t t1, t2;

 int a = 1, b = 2;

 pthread_create(&t1, NULL, task, &a);

 pthread_create(&t2, NULL, task, &b);

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 printf("Threads completed\n");

 return 0;

}

Output:

Result:

The program using POSIX Real-Time Threads was successfully implemented. Multiple threads

executed concurrently with assigned priorities, demonstrating real-time task scheduling,

synchronization, and efficient CPU utilization.

Ex No: 14 Register No:

Date: Name:

Study and simulate Power Management Approaches used in Android/iOS

Aim:

To study and simulate various power management approaches used in Android and iOS devices,

focusing on techniques such as CPU throttling, sleep states, app lifecycle management, and battery

optimization strategies.

Program:

#!/bin/bash

echo "=== Power Management Simulation ==="

Input number of apps

echo -n "Enter number of running apps: "

read n

Input each app's CPU usage

for ((i=0; i<n; i++)); do

 echo -n "Enter CPU usage of App $((i+1)) (in %): "

 read cpu[$i]

done

Simulate CPU Frequency Scaling

echo ""

echo "Simulating CPU Frequency Scaling..."

total_cpu=0

for ((i=0; i<n; i++)); do

 total_cpu=$((total_cpu + cpu[$i]))

done

if [$total_cpu -le 50]; then

 echo "CPU load low ($total_cpu%) → Reducing frequency to save power"

elif [$total_cpu -le 80]; then

 echo "CPU load moderate ($total_cpu%) → Normal frequency"

else

 echo "CPU load high ($total_cpu%) → Max frequency for performance"

fi

Simulate Sleep/Idle mode

echo ""

echo "Simulating Sleep/Idle Mode..."

echo "If no user activity for 5 seconds → Entering Idle Mode..."

sleep 2

echo "Device Idle Mode Activated (Background tasks paused)"

Simulate App Management

echo ""

echo "Simulating App Power Management..."

for ((i=0; i<n; i++)); do

 if [${cpu[$i]} -le 10]; then

 echo "App $((i+1)) CPU low → Suspended to save battery"

 else

 echo "App $((i+1)) CPU active → Running normally"

 fi

done

echo ""

echo "Power Management Simulation Completed!"

Output:

Result:

The power management approaches used in Android and iOS were successfully studied and

simulated. The simulation demonstrated how different techniques—such as sleep modes, adaptive

battery optimization, background process limits, and dynamic CPU scaling—help reduce power

consumption and extend battery life in mobile devices.

Ex No: 15

 Register No:

Date: Name:

Implementations of Android Applications

Aim:

To develop an Android application that takes a phone number as input from the user and opens

the system phone dialer with that number using an Implicit Intent.

Steps:

Step 1: Start Android Studio and create a new project with an "No Activity", then select java

language and then select Groovy DSL for build configuration language

Step 2: In activity_main.xml, design the user interface with an No Actvity (for input) and a

Button (to trigger the action).

Step 3: In MainActivity.java, declare variables for EditText and Button.

Step 4: Inside onCreate(), link the Java variables to XML components using findViewById().

Step 5: Set an OnClickListener on the button.

Step 6: Inside the onClick method, retrieve the phone number string from the EditText.

Step 7: Create an Intent object with the action Intent.ACTION_DIAL.

Step 8: Set the data for the intent using Uri.parse("tel:" + number).

Code:

 MainActivity.java

The complete Java logic for the dialer application.

package com.example.dialer;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {

 // 1. Declare UI components

 EditText etPhone;

 Button btnDial;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 // 2. Initialize UI components using findViewById

 etPhone = findViewById(R.id.etPhone);

 btnDial = findViewById(R.id.btnDial);

 // 3. Set OnClickListener on the button

 btnDial.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 // 4. Get the phone number from EditText

 String phoneNumber = etPhone.getText().toString();

 // 5. Create an Implicit Intent with ACTION_DIAL

 Intent intent = new Intent(Intent.ACTION_DIAL);

 // 6. Set the data URI (prefix 'tel:' is required)

 intent.setData(Uri.parse("tel:" + phoneNumber));

 // 7. Start the activity

 startActivity(intent);

 }

 });

 }

}

activity_main.xml

The XML layout file defining the user interface structure.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 android:gravity="center"

 android:padding="20dp"

 android:background="#FFFFFF">

 <!-- Title Text -->

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Phone Dialer"

 android:textSize="24sp"

 android:textStyle="bold"

 android:layout_marginBottom="30dp"

 android:textColor="#333333"/>

 <!-- Input Field for Phone Number -->

 <EditText

 android:id="@+id/etPhone"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:hint="Enter Phone Number"

 android:inputType="phone"

 android:minHeight="48dp" />

 <!-- Button to Trigger Dialing -->

 <Button

 android:id="@+id/btnDial"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="20dp"

 android:text="Dial Number" />

</LinearLayout>

AndroidManifest.xml

The XML layout file defining the Android Application for running.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <application

 android:allowBackup="true"

 android:dataExtractionRules="@xml/data_extraction_rules"

 android:fullBackupContent="@xml/backup_rules"

 android:icon="@mipmap/ic_launcher"

 android:label="Dialer"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/Theme.Dialer">

 <activity

 android:name="MainActivity"

 android:exported="true">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Output ScreenShots:

Result:

Hence we have successfully implemented the basic android applications by creating a simple

phone dialer using java in Android Studio.

