SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

Q S RM Ramapuram, Chennai

FACULTY OF SCIENCE AND HUMANITIES

Department of Computer Science and Applications

(M.C.A Computer Application)

PRACTICAL RECORD
NAME
REGISTER NO.
COURSE : M.C.A - Computer Application

SEMESTER/YEAR : 1/1

SUBJECT CODE : PCA25C06J

SUBJECT NAME : Advanced Operating System

November 2025

SIGNATURE

EX. DATE LIST OF EXPERIMENTS PAGE |OF FACULTY

NO. NO. | INCHARGE

. Simulation of Process Scheduling

5 Implementation of System Calls

3 Implementation of Deadlocks

4 Implementation of Page replacement
algorithm

5 Implementation of Scheduling
algorithm

6 Implementation of File access methods

; Implementation of Distributed
scheduling

g Implementation of clock

synchronization

5 Implementation of Concurrency control
algorithms

10 Write a program using POSIX Real-

Time Threads
1 Implementation of real time simulation
B Simulate a Hybrid Scheduler using
combination of RMS and EDF
13 Write a program using POSIX Real-
Time Threads Using C
1 Study and simulate Power Management
Approaches used in Android/iOS
s Implementations of Android

Applications

Ex No: 1 Register No:

Date: Name:
Simulation of Process Scheduling

AIM:

To simulate different CPU process scheduling algorithms such as FCFS, SJF (Non-Preemptive),
and Priority Scheduling using a shell script and to compute the Waiting Time and Turnaround Time
for each process.

Program:
Programl: FCFS Scheduling
#!/bin/bash

echo "FCFS SCHEDULING"

echo -n "Enter number of processes: '

read n

for ((i=0; i<n; i++)); do
echo -n "Burst Time of P$((i+1)): "
read bt[$i]
pid[$i]=$((i+1))

done

wt[0]=0
for ((i=1; i<n; i++)); do
wt[$i]=8((wt[$i-1] + bt[$i-1]))

done

for ((i=0; 1<n; 1++)); do

tat[$i]=$((wt[$i] + bt[$i]))

done

nn

echo

echo "--

echo -e "PIDMBT\tWT\tTAT"

echo "--

for ((i=0; i<n; i++)); do
echo -e "${pid[$i]}\tS {bt[$i]} \tS {wt[$i] }\t$ {tat[$i]}"
done

echo "--

Program2:SJF Scheduling
#!/bin/bash

echo "SJF (NON-PREEMPTIVE) SCHEDULING"

echo -n "Enter number of processes: '

read n

for ((i=0; i<n; i++)); do
echo -n "Burst Time of P$((i+1)): "
read bt[$i]
pid[$i]=$((i+1))

done

Sorting by Burst Time
for ((i=0; 1<n; 1++)); do

for ((j=i+1; j<n; j++)); do

if [${bt[$j]} -1t ${bt[$i]}]; then
swap burst time
temp=3$ {bt[$i]}
bt[$i]=$ {bt[$j]}
bt[$j]=$temp

swap process id
temp=3$ {pid[$i]}
pid[$i]=$ {pid[$;]}
pid[$j]=$temp
fi
done

done

wt[0]=0
for ((i=1; i<n; i++)); do
wt[$i]=8((wt[$i-1] + bt[$i-1]))

done

for ((i=0; 1<n; 1++)); do
tat[$i]=$((wt[$i] + bt[$i]))

done

eChO nn

echo "--

echo -e "PIDMBT\tWTMTAT"

echo "--

for ((i=0; i<n; i++)); do
echo -e "${pid[$i]} \t$ {bt[$i]}\tS {wt[$i] }\t$ {tat[$i]}"
done

echo "--

Program3:Priority Scheduling
#1/bin/bash

echo "PRIORITY (NON-PREEMPTIVE) SCHEDULING"
echo -n "Enter number of processes: "

read n

for ((i=0; i<n; i++)); do
echo -n "Burst Time of P$((i+1)): "
read bt[$i]
echo -n "Priority of P$((i+1)): "
read pr[$i]
pid[$i]=$((i+1))

done

Sorting by Priority (lower value = higher priority)
for ((i=0; 1<n; 1++)); do
for ((=i+1; j<n; j++)); do
if [${pr[$j]} -1t ${pr[$i]}]; then

temp=3$ {pr[$i]}
pr($i]=${pr[$;1}

pr[$j]=$temp

temp=$ {bt[$i]}
bt[$i]=${bt[$j]}
bt[$j]=$temp

temp=3$ {pid[$i]}
pid[$i]=$ {pid[$;]}
pid[$j]=$temp
fi
done

done

wt[0]=0
for ((i=1; i<n; i++)); do
wt[$i]=8((wt[$i-1] + bt[$i-1]))

done

for ((i=0; i<n; i++)); do
tat[$i]=$((wt[$i] + bt[$i]))

done

eChO nn

echo "--

echo -e "PID\tBT\tPRUWWT\MTAT"

echo "--

for ((i=0; i<n; i++)); do
echo -e "$ {pid[$i]}\tS {bt[$i]} \t$ {pr[$i]} \t§ {wt[$i] }\t$ {tat[$i]}"
done

echo "--

Output: FCFS

$ vi scheduling.sh

$ 1s

LICENSE.txt README.portable bin/ and / git-bash.exe* git-and.exe proc/ scheduling.sh’

$ chmod +x scheduling.sh

SIMULATION

= (Non-Preemptive)
3. Priori Scheduling (Non-Preemptive)
Enter your choice: 2
Enter number of proc L
Time of P1:

rst Time of P2

st Time of

st Time of

st Time of

RESULT:

Thus, the simulation of FCFS, SJF, and Priority Scheduling algorithms was successfully
implemented using a Bash script, and the Waiting Time and Turnaround Time for all processes
were calculated.

Ex No: 2 Register No:

Date: Name:
Implementation of System Calls

AIM:

To implement and demonstrate various operating system system calls such as fork(), exec(),
getpid(), file operations (open, read, write), stat(), and exit() using a shell script.

Program:

#!/bin/bash

echo "--

echo " SYSTEM CALLS DEMONSTRATION "

n

echo "--
echo ""

echo "1. fork() simulation"

echo "2. exec() simulation"

echo "3. getpid() system call"

echo "4. File operations (open, read, write)"
echo "5. stat() system call"

echo "6. exit() system call"

echo -n "Enter your choice: "

read ch

case $ch in

Y

echo "Simulating fork() using a subshell & background process"

(

echo "This is CHILD process"

echo "Child PID: $$"

) &

echo "This is PARENT process"
echo "Parent PID: $$"

2)

echo "Simulating exec() - executing Is command in place"
echo "Before exec()"

exec Is

echo "This line will not execute"

3)

echo "Using getpid() equivalent"
echo "Current Process ID (PID): $$"
4)

echo "File Operations"

echo -n "Enter filename to create/open: "
read fname

echo "Opening file..."

touch $thame

echo -n "Write data to file: "

read data

echo "$data" > $fname

echo "Data written successfully"

echo "Reading file content:"

cat $fhame

b

5)

echo "stat() system call simulation"

echo -n "Enter filename:
read fn

stat $th

6)

echo "Demonstrating exit() system call"
echo "Exiting program..."

exit

*)

echo "Invalid choice";;

esac

Output

5 chmod +x example.sh

imulation
mulation

read, write)

a subshell & background proce:

, read, write)

ting exec() - executing command in place
re exec()
E.txt README.portable bin omd dev etc example.sh git-bash.exe

git-cmd. exe

ming

proc

scheduling

RESULT:

Thus, the implementation of different system calls such as fork(), exec(), getpid(), file handling,
stat(), and exit() was successfully demonstrated using shell scripting.

Ex No: 3 Register No:

Date: Name:
Implementation of Deadlocks

AIM:

To simulate a deadlock scenario in an operating system using shell scripts by creating two
processes competing for two shared resources, thereby demonstrating how circular wait and
mutual exclusion lead to deadlock.

Program:
deadlockl.sh
#!/bin/bash

echo "Process 1: Trying to lock Resource 1"
exec 10>R1.lock
flock 10

echo "Process 1: Locked Resource 1"

sleep 3

echo "Process 1: Trying to lock Resource 2"
exec 11>R2.lock

flock 11

echo "Process 1: Locked Resource 2"

echo "Process 1: Completed"

deadlock2.sh

#!/bin/bash

echo "Process 2: Trying to lock Resource 2"
exec 20>R2.lock

flock 20

echo "Process 2: Locked Resource 2"

sleep 3

echo "Process 2: Trying to lock Resource 1"
exec 21>R1.lock

flock 21

echo "Process 2: Locked Resource 1"

echo "Process 2: Completed"

output:

$ chmod +x example.sh

$ chmod +x examplel.sh

5 ./example.sh

Process 1: Trying to lock Resource 1

. /example.sh: 1ine 5: flock: command not found
Process 1: Locked Resource 1

Process 1: Trying to lock Resource 2

. /example.sh: Tine 12: flock: command not found
Process 1: Locked Resource 2

Process 1: Completed

/examplel.sh
cess 2: Trying to lock Resource 2
f el.sh: 1ine 5: flock: command not found
2 ocked Resource 2
Process 2: Trying to lock Resource 1
. /examplel.sh: Tine 12: flock: command not found
Process 2: Locked Resource 1
Process 2: Completed

RESULT:

Thus, the deadlock situation was successfully simulated using two shell scripts, demonstrating
how improper resource allocation causes processes to wait indefinitely, resulting in a deadlock.

Ex No: 4 Register No:

Date: Name:
Implementation of Page replacement algorithm

AIM:

To implement and simulate different page replacement algorithms such as FIFO, LRU, and
Optimal using shell scripts, and to calculate the number of page faults for a given reference string.

PROGRAM 1: FIFO PAGE REPLACEMENT
#!/bin/bash

echo -n "Enter number of frames: "
read nf

echo -n "Enter number of pages: "
read np

echo "Enter page reference string:"
for ((i=0;i<np;i++))

do

read ref[$i]

done

for ((i=0;1<nf;i++))

do

frame[$i]=-1

done

pf=0

pos=0

echo "Page\tFrames"

for ((i=0;1<np;i++))

do

page=${ref[$i]}

hit=0

for ((j=0;j<nf;j++))

do

if [${frame[$j]} -eq $page]; then
hit=1

break

fi

done

if [$hit -eq 0]; then
frame[$pos]=$page

pos=3(((pos+1) % nf))
pf=$((pf+1))

fi

echo -n "$page\t"
for (j=0;j<nf;j++))

do

echo -n "$ {frame[$j]} "
done

echo ""

done

echo "Total Page Faults: $pf"

PROGRAM 2: LRU PAGE REPLACEMENT
#!/bin/bash

echo -n "Enter number of frames: "

read nf

echo -n "Enter number of pages: "
read np

echo "Enter page reference string:"
for ((i=0;i1<np;i++))

do

read ref[$i]

done

for ((i=0;1<nf;i++))

do

frame[$i]=-1

recent[$i]=0

done

pf=0

echo "Page\tFrames"

for ((i=0;1<np;it++))

do

page=$ {ref[$i]}

hit=0

for ((j=0;j<nf;j++))

do

if [${frame[$j]} -eq $page]; then
hit=1

recent[$j]=$i

break

fi

done

if [$hit -eq 0]; then
Iru_index=0

min=$ {recent[0]}

for ((j=1;j<nf;j++))

do

if [${recent[$j]} -It $min]; then
min=$ {recent[$j]}
Iru_index=$;

fi

done
frame[$lru_index]=$page
recent[$lru_index]=$i
pf=$((pf+1))

fi

echo -n "$page\t"
for ((k=0;k<nf;k++))

do

echo -n "$ {frame[$k]} "
done

echo ""

done

echo "Total Page Faults: $pf"

PROGRAM 3: OPTIMAL PAGE REPLACEMENT
#!/bin/bash

echo -n "Enter number of frames: "

read nf
echo -n "Enter number of pages: "
read np

echo "Enter page reference string:"

for ((i=0;i<np;i++))
do

read ref[$i]

done

for ((i=0;i1<nf;i++))
do

frame[$i]=-1

done

pf=0

echo "Page\tFrames"
for ((i=0;i<np;i++))
do

page=$ {ref[$i]}

hit=0

for ((7=0;j<nf;j++))
do

if [${frame[$j]} -eq $page]; then
hit=1

break

fi

done

if [$hit -eq 0]; then

replace index=-1
farthest=-1

for ((j=0;j<nf;j++))

do

f=$ {frame[$j]}

found=0

for ((k=i+1;k<np;k++))
do

if [${ref[$k]} -eq $f]; then
found=1

if [$k -gt $farthest]; then
farthest=$k
replace_index=$

fi

break

fi

done

if [$found -eq 0]; then

replace index=$§j

break

fi

done

frame[S$replace index]=$page
pf=8((pf+1))

fi

echo -n "$page\t"

for ((k=0;k<nf;k++))

do

echo -n "$ {frame[$k]} "
done

echo ""

done

echo "Total Page Faults: $pf"

ouTPUT FIFO PAGE REPLACEMENT

$ chmod +x examplel.sh

$./examplel.sh

nter number of frames: 3
nter number of pages: 7
nter page reference string:

1
&
1
1

wwww

WwWWwnN

0NN

s}

RESULT:

Thus, the FIFO, LRU, and Optimal page replacement algorithms were successfully implemented
using shell scripts, and the page faults for each algorithm were computed effectively.

Ex No: 5 Register No:

Date: Name:
Implementation of Scheduling algorithm

AIM:

To implement and simulate disk scheduling algorithms such as FCFS, SSTF, SCAN, and C-SCAN
using shell scripts, and to calculate the total head movement for a given set of disk requests.

PROGRAM 1: FCFS DISK SCHEDULING
#!/bin/bash

echo -n "Enter number of requests: "
read n

echo "Enter disk requests:"

for ((i=0;1<n;i++))

do

read req[$1]

done

echo -n "Enter initial head position: "
read head

total=0

cur=$head

echo "Sequence of movement:"
echo -n "$cur "

for ((1=0;1<n;i++))

do

diff=$((req[$i] - cur))

if [$diff -1t 0]; then dift=8((-diff)); fi
total=$((total + diff))

cur=$ {req[$i]}

echo -n "-> $cur "
done
echo ""

echo "Total Head Movement = $total"

PROGRAM 2: SSTF (Shortest Seek Time First)

#!/bin/bash

echo -n "Enter number of requests: "
read n

echo "Enter disk requests:"

for ((1=0;1<n;i++))

do

read req[$1]

visited[$i]=0

done

echo -n "Enter initial head position: "
read head

total=0

cur=$head

done count=0

echo "Sequence:"

echo -n "$cur "

while [$done count -1t $n]

do

min=9999

index=-1

for ((1=0;1<n;i++))

do

if [${visited[$i]} -eq O]; then
diff=$((req[$i] - cur))

if [$diff -1t 0]; then diff=$((-diff)); fi
if [$diff -1t $min [; then
min=8$diff

index=8$i

fi

fi

done

visited[$index]=1

total=3$((total + min))

cur=$ {req[$index]}

done count=$((done_count + 1))
echo -n "-> $cur "

done

echo ""

echo "Total Head Movement = $total"

PROGRAM 3: SCAN (Elevator Algorithm)
Save as scan.sh

#!/bin/bash

echo -n "Enter disk size: "

read ds

echo -n "Enter number of requests: "

read n

echo "Enter requests:"

for ((1=0;1<n;i++))

do

read req[$i]

done

echo -n "Enter initial head position: "
read head

req[$n]=$head

req[$((n+1))]=0

req[$((n+2))]=$ds

sort_req=($(printf "%s\n" "$ {req[@]} " | sort -n))
echo "Sequence:"

echo -n "$head "

found head=0

total=0

Find index of head

for ((i=0;1&It;$ {#sort_req[@]};i++))

do

if [${sort_req[$i]} -eq $head]; then

found head=S$i

break

fi

done

Move right

for ((i=$found head+1;i<$ {#sort_req[@]};i++))
do

diff=$((sort_req[i] - head))

total=$((total + diff))

head=$ {sort_req[$i]}

echo -n "-> $head "
done

Then reverse to left

for ((i=$found_head-1;i>=0;i--))
do

diff=$((head - sort_req[i]))
total=$((total + diff))

head=$ {sort req[$i]}

echo -n "-> $Shead "
done

echo ""

echo "Total Head Movement = $total"

PROGRAM 4: C-SCAN (Circular SCAN)
Save as cscan.sh

#!/bin/bash

echo -n "Enter disk size: "

read ds

echo -n "Enter number of requests: "
read n

echo "Enter requests:"

for ((1=0;1<n;i++))

do

read req[$i]

done

echo -n "Enter initial head position: "
read head

req[$n]=$head

req[$((n+1))]=0

req[$((n+2))]=$ds

sort_req=($(printf "%s\n" "$ {req[@]} " | sort -n))
echo "Sequence:"

echo -n "$head "

total=0

found head=0

Find index of head

for ((i=0;i&It;$ {#sort_req[@]};i++))

do

if [${sort_req[$i]} -eq $head]; then

found head=$i

break

fi

done

Move right to end

for ((i=$found head+1;i<$ {#sort_req[@]};i++))
do

diff=$((sort_req[i] - head))

total=$((total + diff))

head=$ {sort req[$i]}

echo -n "-> $Shead "

done

total=$((total + ds))

head=0

echo -n "-> 0 "

for ((i=1;i<$found head;i++))

do

diff=$((sort_req[i] - head))

total=$((total + diff))

head=$ {sort req[$i]}

echo -n "-> $head "

done

echo ""

echo "Total Head Movement = $total"
OUTPUT FCFS DISK SCHEDULING

$ chmod +x examplel.sh

$./examplel.sh

Enter number of requests: 5
Enter disk requests:

23

25

13

12

35

Enter initial head position:

RESULT:

Thus, various disk scheduling algorithms—FCFS, SSTF, SCAN, and C-SCAN—were
successfully implemented using shell scripts, and the total head movement for each algorithm was
calculated.

Ex No: 6 Register No:
Date: Name:
Implementation of File access methods

Aim:
To implement and demonstrate various file access methods (sequential and random) in a
programming environment, enabling efficient reading and writing of data to files.

PROGRAM 1: SEQUENTIAL FILE ACCESS
#!/bin/bash

echo -n "Enter filename to read sequentially: "
read fname

if [! -f "$fname"]; then

echo "File not found!"

exit

fi

echo "Sequential File Access:"

echo " "

lineno=1

while [FS=read -r line

do

echo "Line $lineno: $line"
lineno=$((lineno+1))

done < "$fhame"

PROGRAM 2: DIRECT (RANDOM) FILE ACCESS
#!/bin/bash

echo -n "Enter filename: "

read fname

if [! -f "$fname"]; then

echo "File not found!"

exit

fi

echo -n "Enter the line number to access directly: "

read line

echo "Direct Access Result:"

sed -n "$ {line}p" "$fname"
Direct byte access version (optional):

echo -n "Enter byte offset: "

read offset

echo -n "Enter number of bytes to read: "
read count

dd if="$thame" bs=1 skip=S$offset count=Scount 2>/dev/null

PROGRAM 3: INDEXED FILE ACCESS
#!/bin/bash
echo "Indexed File Access"

echo " "

echo -n "Enter key to search: "

read key

index.txt format — key line_number

line=$(grep ""$key " index.txt | awk '{print $2}')
if [-z "$line" |; then

echo "Key not found!"

exit

fi

echo "Record found at line: $line"
record=$(sed -n "${line}p" data.txt)
echo "Record: $record"

HOW TO PREPARE INDEX FILE
Example content for data.txt:

1001 Ram CS

1002 Ravi IT

1003 Ajay ECE

Example content for index.txt:

1001 1

1002 2

1003 3

Output SEQUENTIAL FILE ACCESS

§ chmod +x examplel.sh

§ ./examplel.sh

Enter filename to read sequentially: data.txt
Sequential File Access:

Line 1: Line 1: 1001 Ram CS
Line 2: Line 2: 1002 Ravy IT

Result:

The program successfully demonstrated the use of different file access methods. Data was
written to and read from files using sequential and random access techniques, verifying correct
implementation and proper handling of file operations.

Ex No: 7 Register No:
Date: Name:
Implementation of Distributed scheduling

Aim:

To implement and study distributed scheduling algorithms that allocate tasks efficiently across
multiple processors in a distributed system, ensuring optimal resource utilization and reduced
execution time.

Program:

#!/bin/bash

echo "----- Distributed Scheduling Simulation -----

echo -n "Enter number of tasks: "

read n

Read task loads

for ((i=0; i<n; i++)); do
echo -n "Enter load of Task $((i+1)): "
read load[$i]

done

nodel load=0

node2 load=0

echo

echo "Task Assignment:"

for ((i=0; 1<n; 1++)); do
if [$nodel load -le $node2 load |; then
echo "Task $((i+1)) (Load ${load[$i]}) assigned to NODE 1"
nodel load=$((nodel load + load[$i]))

else

echo "Task $((i+1)) (Load ${load[$i]}) assigned to NODE 2"
node2 load=$((node2 load + load[$i]))
fi

done

echo "Node 1 Total Load: $nodel load"

echo "Node 2 Total Load: $node2 load"

Output:

$ chmod +x exx.sh

$./exx.sh
Distributed Scheduling Simulation
number of tasks: 5
load of Task 1:
Toad of Task
load of Task
of Task 4:
of Task 5:

sk Assignment:

(Load 10) assigned to NODE 1
(Load 20) assigned to NODE 2
(Load 5) assigned to NODE 1
(Load 10) assigned to NODE 1
(Load 15) assigned to NODE 2

Final Load Status
Total Load: 25
2 Total Load: 35

Result:

The distributed scheduling algorithms were successfully implemented. Tasks were allocated across
multiple processors based on the chosen scheduling strategy, demonstrating improved load
balancing and efficient execution in a distributed environment.

Ex No: 8 Register No:
Date: Name:
Implementation of clock synchronization

Aim:
To implement clock synchronization in a distributed system, ensuring that all system clocks are
coordinated and maintain consistent time across different nodes.

Program

#!/bin/bash

Simple Clock Synchronization (Berkeley Algorithm)

Step 1: Get number of machines
echo -n "Enter number of machines: "

read n

Step 2: Read each machine time
echo "Enter time of each machine (in seconds):"

sum=0

for ((i=1; i<=n; i++))

do
echo -n "Machine $i time: "
read t[i]
sum=$((sum + t[i]))

done

Step 3: Coordinator calculates average time

avg=$((sum / n))

nn

echo

echo "Calculated Average Time: $avg seconds"

n

echo "--

Step 4: Show time adjustment required for each machine
for ((i=1; i<=n; i++))
do

diff=$((avg - t[i]))

echo "Machine $i adjustment: $diff seconds"

done

echo "Clock Synchronization Completed!"

output:

$./exx.sh

Enter number of machines: 3

Enter time of each machine (in seconds):
Machine 1 time: 10

Machine time: 13

Machine time: 3

2
3
3

alculated Average Time: 8 seconds

Machine 1 adjustment: -2 seconds
Machine 2 adjustment: -5 seconds
B

Machine 3 adjustment: 5 seconds
lTock Synchronization Completed!

Result:

The clock synchronization algorithm was successfully implemented. The clocks of all nodes were
synchronized, reducing time discrepancies and demonstrating accurate coordination in a
distributed environment.

Ex No: 9 Register No:
Date: Name:
Implementation of Concurrency control algorithms

Aim:
To implement concurrency control algorithms in a database system to manage simultaneous

transactions, ensuring data consistency, integrity, and prevention of conflicts like lost updates or
deadlocks.

Program:

#!/bin/bash

echo "Two-Phase Locking (2PL) Demo"

"

echo "--

lockA=0
lockB=0
echo ""
echo "Transaction T1 requesting Lock on A..."
if [$lockA -eq 0 |; then

lockA=1

echo "T1 acquired Lock A"
else

echo "T1 waiting for Lock A"
fi
echo "Transaction T2 requesting Lock on B..."
if [$lockB -eq 0]; then

lockB=1

echo "T2 acquired Lock B"

else
echo "T2 waiting for Lock B"
fi

nn

echo
echo "T1 requesting Lock on B..."
if [$lockB -eq 0 |; then

lockB=1

echo "T1 acquired Lock B"
else

echo "T1 BLOCKED (2PL prevents conflict)"
fi
echo ""
echo "Unlocking all locks..."
lockA=0
lockB=0
echo "2PL Execution Completed!"

output:

$./exx.sh
wo-Phase Locking (2PL) Demo

ransaction Tl requesting Lock on A..
1 acquired Lock A
ransaction T2 requesting Lock on B...
2 acquired Lock B

1 requesting Lock on B...
BLOCKED (2PL prevents conflict)

Unlocking all Tlocks.
2PL Execution Completed!

Result:

The concurrency control algorithms were successfully implemented. Multiple transactions were
executed concurrently, and the system maintained data consistency and integrity, effectively
handling conflicts and ensuring correct transaction execution.

Ex No: 10 Register No:
Date: Name:
Write a program using POSIX Real-Time Threads

Aim:
To write and execute a program using POSIX Real-Time Threads (pthread) to demonstrate
concurrent execution of tasks with real-time scheduling and priority management.

Program:

#!/bin/bash

echo "=== POSIX Real-Time Threads Simulation in Bash ==="

High Priority Task (simulating FIFO)
high priority task() {
foriin {1..5}; do
echo "High Priority Task (FIFO) running..."
sleep 1

done

Low Priority Task (simulating Round Robin)
low_priority task() {
foriin {1..5}; do
echo "Low Priority Task (RR) running..."
sleep 1

done

echo "Starting high-priority task..."

Use a subshell instead of 'bash -c¢' so functions are visible

nice -n -5 bash -c 'foriin {1..5}; do echo "High Priority Task (FIFO) running..."; sleep 1; done'
&

echo "Starting low-priority task..."
nice -n 10 bash -c 'foriin {1..5}; do echo "Low Priority Task (RR) running..."; sleep 1; done' &
wait

echo "All real-time simulated threads completed!"

Output:

. /exx.sh
== POSIX Real-Time Threads Simulation in Bash ===
Starting high-priority task...
Starting low-priority task...
High Priority Task (FIFO) running...
Low Priority Task (RR) running...
High Priority Task (FIFO) running...

Low Priority Task (RR) running...

High Priority Task (FIFO) running...

Low Priority Task (RR) running...

High Priority Task (FIFO) running...

Low Priority Task (RR) running...

High Priority Task (FIFO) running...

Low Priority Task (RR) running...

A1l real-time simulated threads completed!

Result:

The program using POSIX Real-Time Threads was successfully implemented. Multiple threads
executed concurrently with assigned priorities, demonstrating real-time task scheduling,
synchronization, and efficient CPU utilization.

Ex No: 11 Register No:
Date: Name:
Implementation of real time simulation

Aim:
To implement a real-time simulation program that models and executes tasks in a time-sensitive
environment, demonstrating the behavior of processes under real-time constraints.

Program:

#!/bin/bash

echo "=== Real-Time Simulation ==="

Define Task 1 (Higher priority)
task1() {
foriin {1..5}; do
echo "Task 1 (High Priority) executing at $(date +%T)"
sleep 1

done

Define Task 2 (Lower priority)
task2() {
foriin {1..5}; do
echo "Task 2 (Low Priority) executing at $(date +%T)"
sleep 1

done

echo "Starting Task 1 (High Priority)..."

taskl & # Run in background

echo "Starting Task 2 (Low Priority)..."
task?2 & # Run in background

wait

echo "All tasks completed! Real-Time Simulation Done.'

Output:

5 ./exx.sh
== Real-Time Simulation ===
Starting Task 1 (High Priority)...
Starting Task 2 (Low Priority)...
(High Priority) executing at 16:53:01
(Low Priority) executing at 16:53:01
(High Priority) executing at 16:53:02
(Low Priority) executing at 16:53:02
(High Priority) executing at 16:53:03
(Low Priority) executing at 16:53:03
(High Pr ity) executing at 16:53:05
(Low Priority) executing at 16:53:05
(High Priority) executing at 16:53:06
(Low Priority) executing at 16:53:06
s completed! Real-Time Simulation Done.

1
2
1
2
1
2
1
2
1
2
a

Result:

The real-time simulation was successfully implemented. Tasks were executed according to their
timing constraints, showing correct scheduling, timely execution, and effective management of
real-time processes.

Ex No: 12 Register No:
Date: Name:
Simulate a Hybrid Scheduler using combination of RMS and EDF

Aim:

To simulate a hybrid scheduling algorithm that combines Rate Monotonic Scheduling (RMS) and
Earliest Deadline First (EDF) techniques, aiming to achieve efficient task scheduling in real-time
systems.

Program:

#!/bin/bash

echo "=== Hybrid Scheduler Simulation (RMS + EDF) ==="

Input number of periodic tasks (RMS)
echo -n "Enter number of periodic tasks (RMS): "

read n_rms

Input task periods and execution times
for ((i=0; i<n_rms; i++)); do
echo -n "Enter period of Task $((i+1)): "
read period[$i]
echo -n "Enter execution time of Task $((i+1)): "
read exec_time[$i]

done

Input number of aperiodic tasks (EDF)
echo -n "Enter number of aperiodic tasks (EDF): "

read n_edf

Input deadlines and execution times
for ((i=0; i<n_edf; i++)); do
echo -n "Enter deadline of Task $((i+1)): "
read deadline[$i]
echo -n "Enter execution time of Task $((i+1)): "
read edf exec[$i]
done
echo ""
echo "Simulation of Hybrid Scheduler:"

n

echo "--

Simulate RMS tasks first

echo "Executing RMS (Periodic) Tasks..."

for ((i=0; i<n_rms; i++)); do
echo "Task $((i+1)) running for ${exec time[$i]} units (Period ${period[$i]})"
sleep ${exec_time[$i]}

done

Then simulate EDF tasks

echo ""

echo "Executing EDF (Aperiodic) Tasks..."

for ((1=0; i<n_edf; i++)); do
echo "Task $((i+1)) running for ${edf exec[$i]} units (Deadline ${deadline[$i]})"
sleep ${edf exec[$i]}

done

echo

echo "Hybrid Scheduler Simulation Completed!"

Output:

$./exx.sh

Hybrid Scheduler Simulation (RMS + EDF) ===
number of periodic tasks (RMS): 2
period of Task 1: 3
execution time of Task 1:
period of Task 2: 5
execution time of Task 2:
number of aperiodic tasks
deadline of Task 1: 4
execution time of Task 1:
deadline of Task 2: 6
execution time of Task 2:

Simulation of Hybrid Scheduler:

Executing RMS (Periodic) Tasks...
ask 1 running for 1 units (Period 3)
ask 2 running for 2 units (Period 5)

Executing EDF (Aperiodic) Tasks...
ask 1 running for 1 units (Deadline 4)
sk 2 running for 2 units (Deadline 6)

Scheduler Simulation Completed!

Result:

The hybrid scheduler was successfully implemented. Tasks were scheduled using RMS and EDF
principles, demonstrating improved CPU utilization, timely execution, and effective handling of
both periodic and aperiodic tasks in a real-time environment.

Ex No: 13 Register No:
Date: Name:
Write a program using POSIX Real-Time Threads using ¢

Aim:
To write and execute a program using POSIX Real-Time Threads (pthread) to demonstrate
concurrent execution of tasks with real-time scheduling and priority management.

Program:
#include <stdio.h>
#include <pthread.h>

#include <unistd.h>

void* task(void* arg)
{
int id = *(int*)arg;
for(inti=1;1<=5; i++)
{
printf("Thread %d running %d\n", id, 1);
sleep(1);

}
return NULL;

int main()

{
pthread ttl, t2;

inta=1,b=2;

pthread create(&tl, NULL, task, &a);

pthread create(&t2, NULL, task, &b);

pthread join(tl, NULL);
pthread join(t2, NULL);

printf("Threads completed\n");

return 0;

Output:

Output

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

running
running
running
running
running
running
running
running
Thread running
Thread running
Threads completed

N =22 N =2 N=2N=2 N =
nuuvph B WWNN=S =

=== (Code Execution Successful ===

Result:

The program using POSIX Real-Time Threads was successfully implemented. Multiple threads
executed concurrently with assigned priorities, demonstrating real-time task scheduling,
synchronization, and efficient CPU utilization.

Ex No: 14 Register No:
Date: Name:
Study and simulate Power Management Approaches used in Android/iOS

Aim:

To study and simulate various power management approaches used in Android and iOS devices,
focusing on techniques such as CPU throttling, sleep states, app lifecycle management, and battery
optimization strategies.

Program:

#!/bin/bash

echo "=== Power Management Simulation ==="

Input number of apps
echo -n "Enter number of running apps: "

read n

Input each app's CPU usage

for ((i=0; i<n; i++)); do
echo -n "Enter CPU usage of App $((i+1)) (in %): "
read cpu[$i]

done

Simulate CPU Frequency Scaling
echo ""

echo "Simulating CPU Frequency Scaling..."
total cpu=0

for ((i=0; i<n; i++)); do

total_cpu=$((total cpu + cpu[$i]))

done

if [$total _cpu -le 50 |; then

echo "CPU load low ($total cpu%) — Reducing frequency to save power"
elif [$total cpu -le 80]; then

echo "CPU load moderate ($total cpu%) — Normal frequency"
else

echo "CPU load high ($total cpu%) — Max frequency for performance"
fi

Simulate Sleep/Idle mode
echo ""
echo "Simulating Sleep/Idle Mode..."
echo "If no user activity for 5 seconds — Entering Idle Mode..."
sleep 2
echo "Device Idle Mode Activated (Background tasks paused)"
Simulate App Management
echo ""
echo "Simulating App Power Management..."
for ((i=0; 1<n; 1++)); do
if [${cpu[$i]} -le 10]; then
echo "App $((i+1)) CPU low — Suspended to save battery"
else
echo "App $((i+1)) CPU active — Running normally"
fi
done

echo

echo "Power Management Simulation Completed!"

Output:

$./exx.sh

=== Power Management Simulation
number of running apps: 3
CPU usage of App 1 (On %): 5
CPU usage of App 2 (On %): 15
CPU usage of App 3 (in %): 30

Simulating CPU Frequency Scaling...
w (50%) - Reducing frequency to save power

Simulating Sleep/Idle Mode...
If no user activity for 5 seconds - Entering Idle Mode...
Device Idle Mode Activated (Background tasks paused)

Simulating App Power Management...
CPU Tow - Suspended to save battery
CPU active - Running normally
CPU active - Running normally

Power Management Simulation Completed!

Result:

The power management approaches used in Android and i0OS were successfully studied and
simulated. The simulation demonstrated how different techniques—such as sleep modes, adaptive
battery optimization, background process limits, and dynamic CPU scaling—help reduce power
consumption and extend battery life in mobile devices.

Ex No: 15
Register No:

Date: Name:

Implementations of Android Applications
Aim:

To develop an Android application that takes a phone number as input from the user and opens
the system phone dialer with that number using an Implicit Intent.

Steps:

Step 1: Start Android Studio and create a new project with an "No Activity", then select java
language and then select Groovy DSL for build configuration language

Step 2: In activity main.xml, design the user interface with an No Actvity (for input) and a
Button (to trigger the action).

Step 3: In MainActivity.java, declare variables for EditText and Button.

Step 4: Inside onCreate(), link the Java variables to XML components using findViewByld().
Step 5: Set an OnClickListener on the button.

Step 6: Inside the onClick method, retrieve the phone number string from the EditText.

Step 7: Create an Intent object with the action Intent. ACTION DIAL.

Step 8: Set the data for the intent using Uri.parse("tel:" + number).

Code:

MainActivity.java

The complete Java logic for the dialer application.
package com.example.dialer;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;
import android.view.View;

import android.widget.Button;
import android.widget.EditText;
import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {
//'1. Declare Ul components
EditText etPhone;
Button btnDial;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

// 2. Initialize Ul components using findViewByld
etPhone = findViewByld(R.id.etPhone);
btnDial = findViewByld(R.id.btnDial);

/I 3. Set OnClickListener on the button
btnDial.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
/I 4. Get the phone number from EditText
String phoneNumber = etPhone.getText().toString();

/I'5. Create an Implicit Intent with ACTION_ DIAL
Intent intent = new Intent(Intent. ACTION DIAL);

//'6. Set the data URI (prefix 'tel:' is required)
intent.setData(Uri.parse("tel:" + phoneNumber));

/1 7. Start the activity
startActivity(intent);

1

activity _main.xml

The XML layout file defining the user interface structure.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlIns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout_height="match_parent"
android:orientation="vertical"

android:gravity="center"
android:padding="20dp"

android:background="#FFFFFF">

<!-- Title Text -->

<TextView
android:layout width="wrap_content"
android:layout_height="wrap content"
android:text="Phone Dialer"
android:textSize="24sp"
android:textStyle="bold"
android:layout marginBottom="30dp"
android:textColor="#333333"/>

<!-- Input Field for Phone Number -->

<EditText
android:id="(@-+1d/etPhone"
android:layout width="match_parent"
android:layout height="wrap content"
android:hint="Enter Phone Number"
android:inputType="phone"
android:minHeight="48dp" />

<!-- Button to Trigger Dialing -->
<Button
android:id="@+id/btnDial"
android:layout width="wrap content"
android:layout_height="wrap_ content"
android:layout marginTop="20dp"
android:text="Dial Number" />

</LinearLayout>

AndroidManifest.xml

The XML layout file defining the Android Application for running.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools">

<application
android:allowBackup="true"
android:dataExtractionRules="(@xml/data_extraction rules"
android:fullBackupContent="(@xml/backup rules"
android:icon="@mipmap/ic_launcher"
android:label="Dialer"
android:roundIcon="@mipmap/ic launcher round"
android:supportsRtl="true"
android:theme="(@style/Theme.Dialer">

<activity
android:name="MainActivity"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action. MAIN" />
<category android:name="android.intent.category. LAUNCHER" />
</intent-filter>
</activity>

</application>

</manifest>

Output ScreenShots:

Phone Dialer

Enter Phone Number

Medium Phone API
> @ & O

10:36
Notin your centacts

(720) 046-5031

62 min aga

(720) 046-5031

2

o)

8

Project Alt

[& Medium Phone API 36.1

1037 U

(720) 046-5031

00:01

Keyead Spagker Mare

Result:

Hence we have successfully implemented the basic android applications by creating a simple
phone dialer using java in Android Studio.

